2015 - Sustainable Industrial Processing Summit & Exhibition
sips2015-LOGO Symposium Banner sips2015-Banner
4 - 9 October 2015, Cornelia Diamond Golf Resort & Spa, Antalya, Turkey
Symposium
Venue
Information
Sponsorship
Submission
Program
Registration
Instructions
Post Symposium
Previous Events
PLENARY LECTURES AND VIP GUESTS
Thomas_Hochrainer

Thomas Hochrainer

Bremen University

Thermodynamically Consistent Continuum Dislocation Dynamics And Strain Gradient Terms In Small Scale Plasticity
Aifantis International Symposium
(2nd Intl. symp. on Multiscale Material Mechanics in the 21st Century)[Size effects in plasticity: from Small to Meso Scale ]


Back to Plenary Lectures »

Abstract:

Dislocation based modeling of plasticity is one of the central challenges at the crossover of materials science and continuum mechanics. Developing a continuum theory of dislocations requires the solution of two long standing problems: (i) to represent dislocation kinematics in terms of a reasonable number of variables and (ii) to derive averaged descriptions of the dislocation dynamics (i.e. material laws) in terms of these variables. The kinematic problem (i) was recently solved through the introduction of continuum dislocation dynamics (CDD), which provides kinematically consistent evolution equations of dislocation alignment tensors, presuming a given average dislocation velocity [1, 2]. In the current talk we demonstrate how a free energy formulation may be used to solve the dynamic closure problem (ii) in CDD. We do so exemplarily for the lowest order CDD variant for curved dislocations in a single slip situation [2]. In this case, a thermodynamically consistent average dislocation velocity is found to comprise five mesoscopic shear stress contributions. For a postulated free energy expression we identify among these stress contributions a back-stress term and a line-tension term, both of which have already been postulated for CDD. The back-stress term is a second order strain gradient term strongly resembling a term introduced in a phenomenological strain gradient theory in a seminal paper by E. Aifantis [3]. A new stress contribution occurs, which contains a first order strain gradient. Such a stress contribution is found to be missing in earlier CDD models including the statistical continuum theory of straight parallel edge dislocations by Groma and co-workers [4]. Two entirely new stress contributions arise from the curvature of dislocations. [1] T. Hochrainer, S. Sandfeld, M. Zaiser and P. Gumbsch, 2014., JMPS 63, 167–178. [2] T. Hochrainer, 2015, Philos. Mag. 95 (12), 1321–1367 [3] Aifantis, E. C., 1987. Int. J. Plast. 3, 211–247. [4] I. Groma, F. Csikor and M. Zaiser (2015), Acta Mater. 51, 1271–1281

Member Area

SIPS is the flagship event of FLOGEN STAR OUTREACH, a not-for-profit, non-political and all-inclusive science organization. SIPS as well as FLOGEN STARS OUTREACH takes no sides in political, scientific or technological debates. We equally welcome, without reservations, all spectrum of ideas, theories, technologies and related debates. Statements and opinions expressed are those of individuals and/or groups only and do not necessary reflect the opinions of FLOGEN, its sponsors or supporters.


LOGIN

Translate site in 50+ languages
Flogen is not responsable for translation
Notebook

<<     May 2024     >>

  • MO
  • TU
  • WE
  • TH
  • FR
  • SA
  • SU
  • 29
  • 30
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9



[Click to Enlarge]


Antalya Weather
Tuesday 07 May 2024
Max: -18°C Day Night
Min: -18°C
H%:
Wednesday 08 May 2024
Max: -18°C Day Night
Min: -18°C
H%:
Thursday 09 May 2024
Max: -18°C Day Night
Min: -18°C
H%:
Friday 10 May 2024
Max: -18°C Day Night
Min: -18°C
H%:
Saturday 11 May 2024
Max: -18°C Day Night
Min: -18°C
H%:


foot
© FLOGEN Star OUTREACH | Home | Contact Us | Privacy Policy | Cancellations/Refund Policy

© Copyright of FLOGEN Stars Outreach Organization: The content of this page including all text and photos are copyright of FLOGEN Stars Outreach and none can be used in their original or in any modified or combined form in any publication, web site or in any other medium whatsoever without prior written permission of FLOGEN Stars Outreach.